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Abstract

GL,(N)- and SO, (N)-covariant deformations of the completely symmetric/
antisymmetric projectors with an arbitrary number of indices are explicitly
constructed as polynomials in the braid matrices. The precise relation
between the completely antisymmetric projectors and the completely
antisymmetric tensor is determined. Adopting the GL,(N)- and SO, (N)-
covariant differential calculi on the corresponding quantum group covariant
noncommutative spaces (Cflv , Rfiv , we introduce a generalized notion of vielbein
basis (or ‘frame’), based on differential-operator-valued 1-forms. We then
give a thorough definition of a SO, (N)-covariant R;V -bilinear Hodge map
acting on the bimodule of differential forms on Rf]\’ , introduce the exterior
coderivative and show that the Laplacian acts on differential forms exactly
as in the undeformed case, namely it acts on each component as it does on
functions.

PACS number: 02.20.Uw
Mathematics Subject Classification: 81R50, 17B37

1. Introduction and preliminaries

The noncommutative geometry programme [4, 7] and the related programme of generalizing
the concept of symmetries through quantum groups [6, 8, 25] and quantum group covariant
noncommutative spaces (shortly quantum spaces) [8, 19] has found a widespread interest in
the mathematical and theoretical physics community over the past two decades for its potential
applications in both fundamental and applied physics. In order to make either programme
powerful on a specific model it is important to reproduce as many of the tools available
in the corresponding undeformed (commutative) geometry model (if any) as possible. The
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scope of the present work is to revisit and/or solve a number of related technical issues, left
(partially or totally) untreated or unsolved in the literature, regarding the quantum groups
H = U,gl(N), Usso(N) of the classical series [6, 8], the noncommutative spaces (Cflv , Rg’
[8, 19] on which they act, and the quantum group covariant differential calculi [1, 22, 24] on
the latter.

As known, the braid matrix R of H [8] is a N? x N? matrix, H-covariant deformation
of the permutation matrix P. H-covariant (anti)symmetrizers P* of 2-tensors arise from the
projector decomposition of R, or equivalently can be expressed as (first or second degree)
polynomials in R. In analogy with the undeformed case, H-covariant (anti)symmetrizers P>
of /[-tensors (I > 2) are expected (see, e.g., [9, 11]) to be polynomials in Ris, ..., IA?(I_I),,
the matrices obtained as tensor products of R with / — 2 copies of the N x N unit matrix.
In section 2 we find a very compact and manageable recursive relation, through which these
polynomials are determined. For H = U,so(N) this is in agreement with the much longer
recursive relation found in [15]'. In section 3 we recall or prove properties of the H-covariant
e-tensor [8, 10, 16—18] and determine precisely its relation with the antisymmetric projectors
P!, In section 4 we introduce an open-minded generalization of the notion [5] of vielbein (or
‘frame”) basis of 1-forms on C¥, Rév ; we modify the approach adopted for Rf]\] in [2], in that
we allow the matrix transforming the basis {dx'} into the vielbein to have as entries differential
operators, rather than functions?. In section 5 we introduce a thorough and consistent definition
of a bilinear, U, so(N)-covariant Hodge map, exterior coderivative and Laplacian acting on
differential forms on R;V .

The projector decomposition of the H-covariant braid matrix R reads
R=qgPt—q'P, if H=U,gl(N), (1.1a)
R=qP" —q'P +q'" VP, if H = U,so(N). (1.1b)
P~ is the corresponding deformation of the antisymmetric projector. In (1.1a) the matrix P*
is the U, gl (N)-covariant deformation of the symmetric projector, in (1.1b) it is the U;so(N)-

covariant deformation of the symmetric trace-free projector, while P’ is the trace projector.
Thus they satisfy the equations

peph = prseb, ZP"‘ =1y, (1.2)
o
where (lNZ)ij = 828,{, o, =—,+inthe H = U,gl(N) case and o, B = —, +, ¢t inthe H =
U,so(N) case. R is a symmetric matrix, and therefore also the projectors are
R" =R, Pl =pe. (1.3)
The braid matrix fulfils the equation
SRR3R = RysRys f (Ra3) (1.4)

for any rational function f(¢) in one variable such that the spectrum of f(R) has no poles,
in particular for f (IAQ) = f\’, IA?’I, P“. Here we have used the conventional matrix-tensor
notation 1?12 =R® 1y, IA€23 =1y ® R, where 1y denotes the N x N unit matrix.

In the H = Uyso(N) case the P’ projects on a one-dimensional sub-space and can be
written in the form

. 1 ..
ty i
P =——8"8u, (1.5)
On
' We thank the authors of [15] for calling our attention to their paper, which we did not know, after the appearance
of the first version of the present work on the electronic arXive.

2 As a by-product some unpleasant aspects of the vielbein of [2] disappear. Incidentally, this change of attitude
should allow us to introduce a frame basis also for other quantum spaces, notably ¢g-Minkowski.
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where the N x N matrix g;; is a Ugso(N)-isotropic tensor, deformation of the ordinary
Euclidean metric, which will be given in (3.10), and [1]

(1+¢>M@E" =1 v ox [N
Oy = glmglm = 5 = (ql 2 +q: 1) 5| -
q* —1 2
q
Here and in the following we use the ‘g-deformed numbers’
9 —q”’ g =1 +(I-1)
=, == . 1.6
[yly =g Yo = o [ylq (1.6)
The metric and the braid matrix satisfy the relations [8]
A A 1A ik ~ ..
guRF = R gy, g RH = R¥e™ (17)

Indices will be lowered and raised using g;; and its inverse g, e.q.
ai = gijaj X; = gijxj.

By taking powers of either decomposition (1.1) one can express the projectors as
polynomials in R. One finds

Flly £ R
Fllye + R — (gF £ ¢ V)p!
o _ 47 e @ £q ) if H = U,so(N). (1.9)

q+q~!
The deformed algebras of functions on the two quantum spaces are called ‘algebra of
functions on the quantum hyperplane (C;V > and ‘algebra of functions on the quantum Euclidean

space ]R;v ” respectively (7 := Ingq plays the role of deformation parameter); we shall denote
either one by F. F is essentially the unital associative algebra over C[[A]] generated by
N elements x' (the Cartesian ‘coordinates’) modulo the relations (1.10) given below. The
corresponding H-covariant differential calculi [1, 24] are defined introducing the invariant
exterior derivative d, satisfying nilpotency and the Leibniz rule d(fg) = dfg + fdg, and
imposing the covariant commutation relations (1.11) between the x' and the differentials
g’ := dx'. Partial derivatives are introduced through the decomposition d =: £/9;. All the
other commutation relations are derived by consistency. The complete list is given by

szj}(xhxk =0, (1.10)
xhé_.i _ qkl};'cijk’ (1.11)
(Iy> — PO)E"E" =0, (1.12)
P 9,;0; =0, (1.13)
9;x/ = 5ij +q1§{:xk8h, (1.14)
&' =q ' RINET Oy (1.15)

We shall call DC* (differential calculus algebra on ]Rflv ) the unital associative algebra over
C[[h]] generated by x', &%, 3; modulo these relations. We shall denote by /" (exterior
algebra, or algebra of exterior forms) the graded unital subalgebra generated by the £’ alone,
with grading f = the degree in &', and by /\” (vector space of exterior p-forms) the component
with grading f = p, p =0, 1,2, .... Each A’ carries an irreducible representation of H, and
its dimension is the binomial coefficient (’[\j ) [8, 10], exactly as in the ¢ = 1 (i.e. undeformed)
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case; in particular there are no forms with p > N, and dim( /\N) = (x) = 1, therefore /\N
carries the singlet representation of H.

We shall endow DC* with the same grading f, and call DC? its component with grading
f = p. The elements of DC? can be considered differential-operator-valued p-forms.

We shall denote by Q* (algebra of differential forms) the graded unital subalgebra
generated by the £/, x’, with grading t, and by Q7 (space of differential p-forms) its component
with grading p; by definition Q° = F itself. Clearly both Q* and Q7 are F-bimodules.

We shall denote by H (Heisenberg algebra) the unital subalgebra generated by the x*, 9;.
Note that by definition DC°® = H, and that both DC* and DCP are ‘H-bimodules. Finally, we
shall call F’ the unital associative algebra generated by the 9; alone.

In the H = U,so(N)-covariant case the elements

rti=x - x = gux*al, O:=9-0=g"80 = gudd

are U,so(N)-invariant and respectively generate the centres of F, F’.

The H-covariance of the differential calculus implies that DC* is a (right, in our
conventions) H-module algebra. All the information on the algebras DC*, H and the right
action of the Hopf algebra H on DC* can be encoded in the cross-product algebra DC* >< H.
We recall that this is H ® DC* as a vector space, and so we denote as usual g ® a simply by
ga; that Hlpe«, 15 DC* are subalgebras isomorphic to H, DC*, and so we omit to write either
unit 1pe+, 1 whenever multiplied by non-unit elements; that for any a € DC*, g € H the
product fulfils

ag = gm(a<ga). (1.16)

Here A(g) = ga) ® g« denotes the coproduct of g in Sweedler notation. DC* >« H is a
H-module algebra itself, if we extend < on H as the adjoint action, namely as

h<g=Sguhgw-

In view of (1.16), this formula will correctly reproduce the action also on the elements of DC*,
and therefore on any element a € DC* > H. The elements o/, with o’ = x/, &, 9', transform
with the N-dimensional representation p of U,sl/(N) or U,so(N) respectively:

o! ag = pﬂ’;.(g)oj. (1.17)

The above scheme applies also to the Hopf algebra H = U;;;(/N), which is the central
extension of H = U,so(N) obtained by adding a central and primitive element n generating
dilatations of elements of H,

=@+ Dx',  En=@+DE, = 0- 1. (1.18)
We shall call n also the generator of dilatations of U, g/(N).
One can introduce an alternative H-covariant differential calculus replacing g R by (g R) !

in the defining relations (1.11)—(1.15). The corresponding objects &', 9; can be realized as
suitable ‘functions’ of x/, £/, 9; [20].

2. Completely (anti)symmetric projectors

The projectors P! = ||73i*’ 'J']’j’l H project the tensor product of / copies of the N-
dimensional representation of H to the /-fold completely symmetric/antisymmetric irreducible
representation V,?,[ ' of H therein contained. They are uniquely characterized by the following

properties,

P Py = 87 P =Py P, @2.1)

m(m+1
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(PENH? = pEL, (2.2)

try_ (PE!) = dim (Vy), (2.3)
where m = —,+inthe U ;s/(N)-and m = —, +, t in the U,s0(N )-covariant case respectively,
m = l — 1 and by Prms1y We have denoted the matrix acting as P on the mth,

(m + l)th 1ndlces and as the identity on the remaining ones. Equation (2.3) guarantees
that P*! act as the identity (and not as proper projectors) on VEL for both H =

U,8l(N), Uyso(N) dim (V') = (V), whereas for H = U,gl(N) dim (Vy') = (";1),
for H = Uyso(N) dim (V') = (V,+) — (", 2F). In the appendix we prove:

N—1 N—1
Proposition 1. The projectors PE'*! can be expressed as polynomials in Ris, . . ., 16(’(171)1
through either recursive relation
+,01+41 _ pEl :tl+1
P =P z(1+1)P12 it 24
i 1+1
=P (1+1) Py (1+1)’ (2.5

-1
where Py = P @ 1y, Py ’(M) =1y ® P* lelﬁ)l 1§ ® M= eic, and

M:l:,1+1 [l N 1] [q:FllNz + [l]qR] lfH — UqSl(N),
4041 _ 1 P N - q ooy
M= = [+1], |:q¥ 1y: £[l]gR + W'P ] if H=U,so(N).
As a consequence, they are symmetric, (PT)T = P! and if H = Uyso(N)
Pilljll l][’gjlkl . g]lkl = gij - gl’jer:l:l k]] @7

and the same with the matrix g replaced by its transpose g''.

In [9] we explicitly determined as examples just PE3for H = Ugso(N). In [15] longer
recursive relations for %/ with arbitrary / in the case H = Ugso(N) were given; the ansatz
adopted there was of the type P! = BHHIPE! - The unknown N'*' x N™*! matrices
B! were explicitly determined to be rather long polynomials in Ry, ..., ﬁ(l_l)z. To go

from our formula to theirs one just needs to set BH*! = PEIIMIJ&:)I, to go from their

formula to ours one has to multiply both sides by P;5" ; from the left and do a straightforward
calculation using (2.1), (1.1b).

Remark. One can easily check that in the H = U, gl(N) case the deformed (anti)symmetric
projectors P+! can be obtained from the polynomials giving the undeformed (anti)symmetric
projectors in terms of the permutators P, ,+1) by replacing the latter respectively with
:I:qjEl IAQm(mH), and readjusting the normalizations.

3. Properties of the H-covariant e-tensors

In our convention indices i, j, ... take the following values:
i=12,...,N it H=U,gl(N), 3.1
i=-n,...,—1,0,1,....n if H=U,so(2n +1), (3.2)

i=-n,...,—1,1,....n if H = U,so(2n). (3.3)
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Then the commutation relations (1.12) explicitly amount to

q%‘iéj +Ej$i -0 i< j#—i, (3.4a)
gl =0 i #0, (3.4b)
57457 = (g —qH Y M 1> (3.40)
i>1
£0£0 — (q% _ q_%) qu—ig—igi_ (3.4d)
i>0

Of course (3.4d) applies only to the cases H = U,so(2n + 1), and (3.4¢) applies only to the
cases H = U,so(N). The latter relations are equivalent to the equations (21) given in [10],
whence they can be obtained by an easy rearrangement of terms.

As already said, as a consequence of (3.4) dim( /\N) = 1. Setting e.g.

yydVx = glg2 gV it H=U,gl(N)
yydVx = gngln | gn if H= Uyso(N)

one can introduce the matrix elements of the H-covariant ¢- (or completely antisymmetric)
tensor up to the normalization constant y,y by the relation

ghgn g = dVx ghiin, (3.6)

The e-tensors enter the definitions of the ‘g-determinants’ [8, 10], special central elements

in the Hopf algebras H' dual to H, namely the algebras of functions on the quantum groups.

In the appendix we prove the following proposition, which states a similar property for the

g-determinant of the matrices £* having as matrix elements the so-called FRT (Faddeev—
Reshetikin—Takhtadjan) generators [8] of U,;s[(N), U s0(N):

£re =RV pt(RP), L0 = pf(RTITD)yRT, (3.7)

here R denotes the quasitriangular structure.

(3.5)

Proposition 2.
+,JN I gl i N
Lt Lhile =¢ ,

LN peigiin — g
IN h

(3.8)

In particular
dety L5 := L5 . LE] el = yy if H=U,sl(N),

o 39
det, £* := Ei'fN . Ei’i_lns“""’v = YN if H=Uso(N). 5=

The U,so(N)-covariant matric matrix introduced in (1.5) coincides with its inverse and
is given by
gij =87 =q"8_i, (3.10)
where 2p;) == (N —2,N —4,...,1,0,—1,...,2—=N) forNodd, (2p;) :=(N —2, N —
4,...,0,0,...,2— N) for N even. Introducing the matrix U by

U} = 8§q2i‘N“ it H=U,gl(N) G3.11)

Ui =g"gj =8,g7 if H = Uyso(N) '
(note that det U = 1), we can also recall the g-cyclic property [23]°

giin — (_1)N—1U;,;€i2...mj,' (3.12)

3 The proof given in [23] applies also to the H = U,gl(N) case.
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Let I := (iy,...,in), and if [ is a permutation of J := (1, ..., N) denote by /(]) its
‘length’, namely its number of inversions. The U, gl (N)-covariant deformation of the e-tensor
[8, 16, 17] admits the following compact expression, which closely resembles the undeformed
counterpart

(3.13)

o (—q)!D if I is a permutation of J,
o otherwise.

For the U, so(N )-covariant one [10] so far no such compact expression has been found. In
[10, 18] several properties for general N and the explicit expression for ¢ in the cases N = 3,4
have been determined; we rewrite them here: for N = 3, with normalization y; = q’1

~101 01-1 _ |

e —q! o110 — 1 011 — e

el =—¢g =10 =1 " =1//9-/q gk = 0 otherwise,

and for N = 4, with normalization y; = ¢ >

e—2-112 _ =2 g2-12 = g2 g=2-121 — g g212-1 — 41
e—22-11 — | e—21-1 — g1-212 — - e—11-22 _ |
e-1-221 _ e-12-21 — g121-2 — g e-112-2 _
el-1-2 — gl-2-12 — g1 gl-12-2 — g g2-1-2 — 4
el2-2-1 _ | el=22-1 — 2-2-11 — £2-1-2 — g
217271 — g4 g2-21-1 — | g2-11-2 — 2 g21-1-2 — 42
e~ —k gl=1=l = —k gk = ( otherwise.

For general N we can at least state the following properties, which can be easily proved as a
consequence of (3.4):

Property. Let
I ={i,....in}, J={1,..., N} (3.14)
Then &''/* = 0 unless all the following conditions are fulfilled:
1. if N is odd, the subset Jo = {j | i; = 0} has an odd number of elements;
2. J — Jp is an union of pairs {A, k} such that i, = —i;

3. the number f; of pairs {h, k} such thati, = —i;, =/ fulfilst; <n —[+1;
4. forno j e J = (JoU{NDi; =iju.

Property. [10]
8ivji -+ in iy &N =t gy gy = €7 (3.15)

We now give the relation connecting the antisymmetric projectors and the e-tensors. In
the appendix we prove

Proposition 3. Let (do) ™" := ", ,(e"V)*. Then

—liy.q ky ki it N ol adpgroinky kg
P =aiUy Ul €

(3.12) (3.16)

(_)l(Nfl)dlgjl...j1i1+]...iN gitetdnitii
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where d; is defined by

Nl,! .
dp == dy [l]qE[]\;I—l]q! lfH = Uqgl(N)v
3.17)
. V! g% 4 q% e (
dl = do[l]q![Nq*llq! q7%+q% lfH = U(ISO(N).

Clearlyd; = dy_;, in particular dy = dy. Inthe H = U;s0(N) case this can also be rewritten
in the form
P_’]il"'il = dlgj[...jl il”"'iNSiN. o b . (3 1 8)

JieJi it

By an explicit calculation one finds that for the y3, y4 given above

» {[2]q./2[3]q1/2 if N =3

_ 3.19
2(121,12)*13], if N = 4. (3-19)

0 =

4. Vielbein bases

The set of N exact forms {£'} is a natural basis for the F-bimodule Q', as well as for the
the F > H-bimodule Q! > H. By (1.11), the &' do not commute with F. We are going
to introduce alternative, so-called ‘frames’ (or ‘vielbein’ bases) [5] which do, revisiting the
notion and construction given in [2].

As shown in [3, 12], there exists a algebra homomorphism

o : A>H — A, “4.1)
acting as the identity on A itself,
pa)=a a € A, “4.2)

where H is either Hopf algebra H = U,sl(N), U;so(N) and A = H is the corresponding
deformed Heisenberg algebra on CV R;V . One can immediately extend ¢ to the central

extensions H = U, gl(N), Uq/s_g(/N) by setting
9l =q"Aa? 4.3)

(adopting the same normalization factor ¢V as in [13]), where the element A2 € H is defined
by [20]

A2 =14qkx'd; =1+ 0(h) if H=U,sl(N), 4.4
) . qu2 2 .
A% =1 +qkx'd; + T O=1+0(h) if H = Uyso(N), 4.5)

(in [20, 21] it was denoted by A). We are also extending H so as to contain its square root A~
and inverse square root A as additional generators or as formal power series in the deformation
parameter 7 = Ing. The latter fulfil the relations

Ax' =g XA, A =qd'A, AE = ETA, (4.6)
and the corresponding ones for A~'. For real ¢, ¢ is even a x-algebra homomorphism.
Applying ¢ in particular to both sides of (1.16) one finds

ap(g) = ¢(gm)(a<gw)- 4.7)
In [2] to introduce a frame on Rf]v first auxiliary objects

O =g LT e Q' < H (4.8)
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—_—

(with H = Ug so(N), the negative Borel subalgebra of Uq/s;UV)) were introduced,
characterized by the property to commute with F
[, F1=0. (4.9)

The reader can check (4.9) by a direct computation that [9%, x/] = 0. In [2] we also showed
that there exists a suitable map ¢~ of the type (4.1), (4.2), with A a slight extension of F

and H = U, so(N). Replacing ¢ 7L~} by its ¢~ -image has no effect on the commutation
relation with x/, see (4.7), whence we found that the elements ' := ¢~ (¢™"L™})&’ (in [2]
denoted simply as {#7}) also fulfilled (4.9), and therefore were called elements of a ‘frame’
(or ‘vielbein’), according to the notion introduced in [5]. Now it is also easy to check that the
same ¥ also commute with the derivatives, [, 3/] = 0. By the same reasoning, replacing
in the theorems and proofs of [2] the map ¢~ with the one ¢, we arrive at

Proposition 4. The sets {9} and {8'} of 1-forms given by

9 = g LTE = £ T ) (ua) L7 (4.10)

0" = Al p(L7)E = EM AT p(S2L) (4.11)
(g = RIOSTIRDY) gre resp. ‘frame’ bases of the H >« Uq/s_;_(TV)-bimodule
DC! >« Uyso(N) and of the H-bimodule DC', in the sense that

[9,H] =0 (0", H] = 0. (4.12)

They satisfy the same commutation relations as the &',
(Iy> — PHI "9k =0 Iy — PHL0"6F = 0. (4.13)

Finally, they form an N-plet under the action of U;"so(N) (i.e. Uyso(N) endowed with the
opposite coproduct).

We just give the proof of the second equality in (4.11), which was not given in [2]. Recalling
the coproduct A(C";;) =L ® E’*Z of the FRT generators we find

0 = p(SLTES2L1 )0t U2 g(SLh)0kp(S2 L)
L Ay(s2L ) = & A Ule(c U,

An analogous proposition for objects ¢, §“ obtained by replacing & by &/, L™} by L*
and 1 by —n holds. In [13] we have shown that the frame basis elements # transform exactly
as the coordinates x“ under the *-structure characterizing real ¢ (namely can be made real by
a suitable C-linear transformation).

Explicit expressions for the images go(ﬁ”i‘) for the H with the lowest N, H =
Uysl(2), Uyso(3), can be found e.g. in [14], section 4.

As the commutation relations (4.13) among the 6" are exactly of the same form of the
ones (1.12) among the £/, we immediately find that also the space /\;V of monomials in ' of
degree N has dimension 1. Moreover,

016" ... =dV gy, (4.14)
where dV € A} is defined replacing in (3.5) d¥x with dV and &' with 6",
Proposition 5. The ‘volume form’ dV is central in DC* and equal to

dv =dVx A7V, (4.15)
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Proof. With the definition of dV adopted for H = U,so(N) (the case H = U,gl(N) is
completely analogous)

dv (4;1) 0" Qn—lA—l(p(E—,;lN)é A—lw(ﬁ—,lr_lN)G—n . .Qn—l%-iN
== A"p(L70) . AT (LT )ED L EY

3.6 _ _ R i 3.8), (4.3 _
(:)A N(p(L ’?NE ,iln)gll...lN de( ):( )A Nde. 0

iy (412

The reader might wonder about the usefulness of the generalized notion of vielbein
introduced in this section: generally speaking the differential forms w, € Q27 and the functions
f € F have a geometrical or physical significance, so since #¢ are in DC! rather than in Q!,
the components of ), in the vielbein basis are in H rather than in F. The point is that, as we
have shown in [13], the difference between these components is irrelevant when evaluating
functionals on QV, scalar products in Q7, etc by means of integration, provided Stokes’
theorem applies.

5. Hodge map and Laplacian on Rflv

Having at one’s disposal also the U, so(N)-covariant metric matrix g;;, a (Uyso(N)-covariant)
Hodge map x : A" — /\pr acting on exterior forms on R;V was introduced (leaving
some ambiguities) in [11, 18] using both g;; and the g-epsilon tensor, in analogy with the
undeformed theory. As we are going to see, one has to fix the ambiguities to make * involutive
and moreover add in the definition a suitable power of A in order to define a Hodge map on
differential forms. It is more convenient to start giving the definition of the Hodge map in the
frame basis:

Proposition 6. For H = U,so(N) andany p =0, 1, ..., N one can define a H-bilinear map

% :DCP — DCN P 5.1
the ‘Hodge map’, such that *1 = dV and on each DC?, and therefore on the whole DC*,

* =% o =id (52)
by setting on the monomials in the 0¢

(OUOC . 0) = c 0 0N ey ay, S (5.3)
the normalization constants c,, are constrained by the conditions

CpCN—p =d,p. 5.4)

The most convenient choice for the ¢, will be given below. H-bilinearity implies in
particular

*(aw,b) = a*w,b VYa,beH, w,eDC’; (5.5)

i.e. applying Hodge and multiplying by ‘functions or differential operators’ are commuting
operations, in other words a differential form w, and its Hodge map image have the same
commutation relations with x?, 3/. That this is true is evident in the frame basis, because of
(4.12). Relation (5.2) easily follows from (3.18). The fixed positive sign on the rhs of (5.2)
(cumbersome when compared to the more familiar (—1)?"=P)) is the sign of dy and is due
to the non-standard ordering of the indices in (5.3). The latter in turn is the only correct one:
had we used a different order, on the rhs of (5.2) tensor products of the matrices U +1 instead
of the identity, would have appeared, because of property (3.12).
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Using the H-bilinearity of * in the appendix we prove

Proposition 7. In terms of the basis of differentials (5.3) takes the form
ENE) =g TN e g gy, M AT (5.6)

This differs from the (incomplete) definition of Hodge map on exterior forms given in
[11, 18] by the presence of A-powers (needed for the H-bilinearity), by the already noted
crucial different indices order and by the explicit determination of the coefficients ¢,. From
the above formulae and the commutation relations (1.11), (4.6) it is evident that by restricting
the domain of # to the unital subalgebra * C DC* generated by x, £/, A*! one obtains a
F-bilinear map

x: QP — QNP (5.7)

fulfilling again (5.2) (just take a,b € F in (5.5)); here F denotes the unital subalgebra
generated by x’, A*!. This restriction is what is the notion closest to the conventional notion
of a Hodge map on Rfiv : as a matter of fact, there is no F-bilinear restriction of * to Q*.

From the bilinearity of the Hodge map and the explicit U, so(N )-covariant form of (5.6)
it immediately follows

Proposition 8. The Hodge map is U,so(N)-covariant, i.e. commutes with the U,so(N)-action:
(Fwp) g ="(wy<g) Vg € Uso(N). (5.8)

This is true also for its restriction to the subalgebra Q* C DC*.

—~—

Remark. But * is not U,so(N)-covariant. This is due to the fact that 1 has a nontrivial action
on each &', and x changes the degree of a monomial in the &'.

As in commutative geometry we introduce the exterior coderivative by
8= —"d". (5.9)

In [13] we show that (at least for positive g) 6 can be seen as the Hermitian conjugate of d
acting on Q* endowed with a suitable scalar product. The residual freedom left by (5.4) in
choosing the ¢, is eliminated by requiring that the differential operator d§ + §d is a scalar
proportional to d - @, as in the commutative geometry case. In the appendix we prove the
following proposition:

Proposition 9. The ‘Laplacian’ A := d§ + 8d reduces on all DC*, and in particular on Q*, to

A=—¢%3-0N>=—¢ V). b, (5.10)
provided we choose
I l_% %_l (5.11)
c .
P = [N — p]q' Iy 4 1 % % 1
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Appendix

We begin this appendix by recalling a few basic properties about the universal R-matrix, or
quasitriangular structure [6], R of the quantum groups U,g, while fixing our conventions. R
intertwines between A and opposite coproduct A°?, and so does also Rz_ll:

R(gn) ® gr) = (o) ® gn))R, R (g ® 80) = (g2) ® 1) RS- (A1)
It fulfils
(A ®idR = Ri3Ra3, (A.2)
(id® AR = Ri3R12, (A3)
SR =R"=(>{d® S HR, (A4)
S~ (@) =u""S(gu, (A.5)

where u, which is defined up to an invertible central factor, can be taken e.g. as the u = u
with

up == (SRR, (A.6)
From (A.1)-(A.3) it follows the universal Yang—Baxter relation
R12R13R23 = R3Ri3R12. (A.7)

The braid matrix R [8] is related to the quasitriangular structure R by R;’}( = R[l,’( =
g (0] ® pi)R = q°pj (L), where oy = 1/N for H = U,gl(N) and oy = 0 for
H = Uy,so(N). With the indices’ convention described in section 3, R is given by
ﬁ:quﬁ®e§+Ze{®ei+kZeE®e§ (A.8)
i ij i<j
when H = Uysl(N), and by

R:quf@ef+ Z e;i®e;+q_IZefi®eii

i#0 i#,— i#0
ori=j=0
k| Dei®e =) a7 e @, (A.9)
i<j i<j

when H = U,so(N). Here ef']- is the N x N matrix with all elements equal to zero except for
a 1 in the ith column and jth row, and k := g — ¢~ .
In the H = U,so(N) case, using (1.7), (1.5) it is not difficult to show the following

formulae,

t pEl _ t pt pFl pElpr STyt ot
7)12Rz3 = QNP12P23R12’ R23 12 = QNR12 7)2373127 (A.10)
t pEl __ t pt pFl pEtlpt __ pFlpt pt ’
7323}-"12 - QNP23P12R23’ R12 P23 - QNR23 77127)23,

which are written in matrix-tensor notation in order to let us do many proofs avoiding indices
i, j, etc. Moreover,

Pl (Sh) = g pS(M)ger, = SLTI = gl lgh. (A.11)
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Proof of proposition 1

One can determine the projectors P+ iteratively. We adopt the ansatz (2.4) with M* = f*(R)
a matrix to be determined. The most general one is

MEH — O‘Iizﬂ (1 + /ﬁlk) if H=Uy,sI(N)

) (A.12)
MEH — a,iNZH (1+ 85, R+ v, P if H = U,so(N).

We first determine the coefficients 5|, %, by imposing the conditions (2.1). By the recursive
assumption, only the condition with m = [ is not fulfiled automatically and must be imposed
by hand. Actually, it suffices to impose just (2.1);, due to the symmetry of the ansatz (2.4)
and of the matrices P™ under transposition. Setting

Piisny = Piay if H =Uysl(N),
Piiery = Pliany + Plas) it H=U,so(N),

this amounts to
e N O I N e +1-1 + +1-1 F
0="P Prieny = PraMigayPra—n My P o= Py
_ prlast + +1-1 prF
=P Mgy M1 P a-nPrie- (A.13)
Inthe H = U;sl(N) case (A.13) becomes
+,1 + B + 5 tot B A +,1-1
0 oc Py [Inest + By Rigeny + B Ra—i + B Bigy Ruaeny Ra—in P 02y Prigany
ey 1 g+ +1 ot ptl—1 F
=Pl Fa™ B a5 B P ) Pl (A.14)
where we have used the braid equation (1.4) to see that the term proportional to 88,
vanishes, and the relations

RPF = 7471 P'F, PR = +q*'Pr).
The condition that the square bracket in (A.14) vanishes is recursively solved, starting from
[ = 1 with initial input i = 0 (since P*! = 1y), by

Bioy = g™y (A.15)

(for [ = 2 this gives back (1.8)).
In the H = U,so(N) case (A.13) becomes

0 Plill [1N”1 + :313:1&1(“1) + yl:flpf(l+l) + ﬂzii?(l—l)l + Vzip(tz—l)l
+ 51iﬂ1-i+1kl(l+l)1§(lfl)l + yliyl:flplt(lH)Pél—l)l + ﬁziyzflpll(ln)k(lfl)l
+ yliﬂlj-ilkl(Hl)P(tl—l)l] 731i..'.1(1_—11)/Pz/(:1F+1)
= Plilz {Lyes + Biai [Fa™' Ly + (@' ™" £ ‘IJFI)P;(M)] + Vl:flplt(lﬂ)
iqilﬁlilN”‘ + Vliyl:fl 7)zt(1+1)7351—1)1 + ﬁziJ/lfl QNPZZ(IH)P(tI—l)Z [:FCIMIN”1

N—1 +1 1. 4o+ 401
+(q tq )Plr(m)] +q7 Y B QNP;(M)P(tl—l)l} 7)1...(1—1)731,(4111)

| _
= Plif..z {IN”1 [] + q:Fl:Blfl + Cli]ﬂzi] +,Pll(l+1)|:16l:i:-l(ql Ntg™h+ Vzﬁfl

4Bt L gV g™ Pt pt + o+ + o+ +1
B VmT + Pl Pa-1y [Vz Y F B v 9Ong

1+ ot -1 o
97y :31+1QN] }Pl...(zl)PlilFﬂ)v
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where we have used the braid equation (1.4) to see that the term proportional to ,81i ﬂlﬁl
vanishes, and the relations

RPT = [Fq™ 1y + (¢ £47THPIPT
73lt(z+1)1%(1—1)/731/(;1“) = QNP[([H)PEJ—I)/kl_(11+1)731/(:1F+1)

= QNP;(1+1)P5171)1 [:FqillN’*‘ +(" T+ qil)le(zﬂ)] 731/2111)
Pl lRl(l+1)P(l n = QNPliII (- 1)177;(1+1)7351—1)1 = :l:q:FlQNPIZ‘.:.’.ZIP;(HI)P(II—I)Z

t t t _ t
7jl(l+1)7)(l—1)l7)l(l+1) - 2 7DI(I+1)'
QN

The conditions that the three square brackets vanish

LF ¢ B 4787 =0,
N-1 4 1
- 9" *q
ﬁzﬁil(ql Ntg®h+ szl + B szlT
Vzil/lfl :Fqilﬂziyzfl On iq:Flei,Bzfl Oy=0
are recursively solved, starting from / = 1 with initial input 8 = 0 = y (since P*! = 1y),
again by (A.15) and by

(@ =D +4g*M) (@ = DA +g"2)
yl-:—l = 1 — qN+2172 l‘l2 Vien = 1— qN,QZ lq—z (A16)
(for [ = 2 this gives back (1.9)).

We determine the coefficient ail by imposing condition (2.2). For both H = U,;sI(N),
U,so(N) this gives

O»

Py A8 Ty S| (2.4) St 1+1 (pEl st +.1
0=P5" (P> —1ym) = P (Pl...lMl(Hl)Pl...l_lN“')

= P o 1 g 5 1]

in the last equality we have used (2.1), (A.12), (1.1). The condition that the square bracket
vanishes is recursively solved, starting from / = 0 with initial input aoi =1,by

1
+ _
Y = 1+ l)qiz ’

By using (1.6) we give at the form (2.6) for M*+!,

To check that (2.3) is satisfied we just note that the dimension of each projector is an
integer, that it is the required one for ¢ = 1 (since in this limit the projector reduces to its
undeformed counterpart), and therefore it is also for any generic ¢, by continuity in g.

Proof of proposition 2

Being H-invariant, the element £ ... £% € A" commutes with all H (within DC* >< H).
Therefore

gh g

(4i6) MI—I(SRQ))EH o é:iNR(l)

U (SRORG(E aRG) - (6 < Riyy)
uy SRR (RE) - £ (Rivi )& - 67
Ul SRY]. . [SRPNISROIRDp [RP] ... ol [RYJ67 .. &7

(1.16)

(].17)
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W (SR (5RO (RLY) oy (RE)E

(A4 -1 —-12) i -17 i -17 j j
= RYD LRI (RTY) e (R Ve g

GD alin =01 g i N
=L jN...E jlé LENY

where Ry, ..., Ry just denote N different copies of R; factoring out d" x (see equation (3.6))
the claim follows.

Proof of proposition 3

We start by recalling the relations (which can be easily checked using the explicit definition
of R, U, P! given above)

to(UaR12) = ¢V 1y tr(U) = [N], it H=U,gl(N)

N

R 1 .
o (UhR1n) = ¢V "1y tr (U2 P},) = on tr(U) = Qy, if H = U,so(N),
N

where U;El = 1y ® U*' and tr, denotes matrix trace on the second factor in the tensor
product C¥ @ CV; this implies
o (Ua M) = b1y, (A.17)
where
[N —=1+1], .
b= ——— it H=U,gl(N) (A.18)
/1y
L vo1, (@2 =Dl =1],
bl:@[q On — [l = 1lyq +W

CIN—1+1], g l4gl?

7 s if H = U,s0(N). (A.19)
q

By definition (3.6) of the e-tensor and (1.12) the claim is manifestly true for/ = N,
P_’N;'l,'.'.'.i]['\jv — ngil ~~~iN8j1 e JN ,

because the rhs fulfils all conditions (2.1)—(2.3). We prove the claim for the remaining / < N

by induction, with N inductive steps. Assume the claim is true for/ = m + 1:

7,m+1i1 ---im+l —_ kl km+l Ina2 AN i irvx+2---iNkI <~~km+l

P Jroeimer = Amar Ul Uptie € :
Multiplying both sides by Ul.{n":‘ (and summing of course also on the repeated indices i,,,+1, Jim+1)
we find on one hand

[t (Um_,_l’P_’m*'l )]il...l‘,.,‘

Jiedm

= dps Ukl U/fm Uﬂfmﬂ 8im+2...iNil<“i/”+l gim+2...iNk1...k,,,+1
Ju e

Jm Im+1

(3.12) k koo Lo X
il dm+1 Ujll o Ujl:’nst,,,,,]...1N1|...L,,,81m+...lNk|...km’

and on the other

_ 2.4) —, —m+l H—,
41 (Ups1 P ’m+l) =" 41 (Um+l7)12TmM " P12,’,7,11)

m(m+1)
A.17 —
( = )bm+1 Plzfr.lm s

whence by comparison the claim for [ = m follows, because d,,b,,+1 = dyy+1.
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Proof of proposition 7

Ihs(5.6) “=” *[g(q"SL™" )07 g (q"SL™T 0]

(4.12) 4 —i i i A
=" *lo(g"SL™) . o(g"SL™7 )67 .07]

 o(gs(cy L)) 667

J1

(5.3) —Np/2 A P —ip —, 01 h h TB)
p s p+l N Ji--Jp
= cpq PEAPQ(S(LTY L LT))O 0 ey
_ —Np/2 A p —Ipn —In —ip — it p—kpa —.ky
=cpq PEAPQ(LT LT )e(S(ET LT LT L)
n h Lo
x Q"+ 0 NghNIN . ghpﬂlpHs]N Jp+1J1---Jp

3.8 — . —
W e g VPR APG(LT L Yghe oty

Jpe1 ©

ky..kpsrit...ip
X ghN]N Tt ghp+llp+lg " !

(A.:H) Cpqin/zApgleN ttt gjp+1[p+l(p((S£7’i’lp+l ) e (S‘Ci’éxv))

p+l

x th+1 L ehNgkN~~~kp+lil~nip

(4.11) —N(p—N/2) A 2p—N Lpe Iy ko kpstin iy
=’ ¢,q (p / )A P glNkN"'glp+lkp+l€pl L EWN RN Kpailed
—N(p=N/2) A2p—N ¢l I
=c,q (p=N/2) \2P=Nglpn S T A
= rhs(5.6)
Proof of proposition 9

We now evaluate the lhs (5.10) on each DCP. We find
(d*d* +*d*d)1 = *d*d1 = *d*&" 3y,
= q*N(lf%)cl*dEi2 .. .EiNSiN___izilA27N8i|
= (DY gV e g g dey, " AN,
_ (_I)NfquNclchiz...iNjANajgiNmizilA27N8il
= q’cicn U_l']iehiz"'i” 3j8iN...i2il 3, A*
— gPcren gl e diery. "0, A2

q2

2
CICN i cic
= %g”faja,-,Az _ 1o

OA?

forp=0,forp =N

N2 N2 .
(d*d* +*d*d)dVx = d*d*dVx = ¢~ T ey d*dAY =g~ T ey dFEN B AN

=q Veyer dE L gV e, AN AN
= (=D g Neye g gV dey, 105, AP
= (DN Neye E2 L LEVE Bey,, 1, 0 A

N-1_2-2N ir..inj AN i 2
= (—1) q CNC1E 2N J d X Eiy..ir ‘8j3,-1A
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2 Ui i 2 N
=q-cyeigle™ ey 0,0, ATdV x
2
_ g ccn

1

2
+
= 7 4 N qN DAszx
co[Nlg g1=% +¢>7!

. ci1c
g"9;0;, A2dVx = N Qa2 gh,
1

N
2

o=

for p = N, whereas for p = 1,2, ..., N — 1 we find on one hand

d*d*sil . E (5 6) ( 1)N p —N(p—

(0

)+N—2 L) i .0 2p—N
Pe d.‘;:””...ENS,'N___ile P NP d

( 1)N p —N(p— )+N 2p—N(N—p+1— )

h h,_ [ps1--INT
XEMLLLET e,y T gy
¢12)

CpCN ,H.]d
i ...t,,AZai

mip+l
N— 1 -2 h h,_ N—1
(DY epen g £ (-1
Ipp)nd Q.. 2
X g bt Slphp—bnhl m Ngizv A ai
CLD 2 LNt i ghos gpapii-hiotin i A2
d
P

p lJp

~~~ip+l

and on the other
gL = (—)PE g

G —N( =Ny i i iy 2p+2—N
(=DPepag VPR AE gy, AT

i j iy...d 2p+2—N
%— NSJNS[Nw"/HZ Lelprl A 2P 0: 0:

N Vlp+l

l']“.i,,ﬂ AZa]

Naip+l

N .
— (_1)N—1Cp+1q—N(p—7)—2p—2*§l],+2 .

(56) N— —2p—2gh h ips2.in

(=1 Cp+lcN rq P N "Eh,..h e NJNSiN---ip+2

(3.12) 2p2 Ch, ipgaend i

= cprien—pg P TEM g gt ey, T Y e

(3.18) 9_2, Cp+1CN— i

) 2 PN ghypartide gheaing, g, A
P

p+l

Lp+1

B A28J 9

N Zlp+l

2-2
(2_4) q r Cp+1CN P shl g_-hppa p lﬂ 1ip
(p+1], dpa Fo-1dp

X [qp SZZg“HIJN [P] Zﬁ}[;;i]ghmle _ 1 +[qp1\kzp 8Z/Zg./ﬁlp+l} 8 alp+l

2-2
an 477" cpricn—p

= ppa-pit-ioiiy
[p+1l, dpn g vl

o 4 T k[p] iv i
psip jipaijn _ Jphpst p=liprtn - PUTAG oIN o jpipsr
X[q 8 8" (plgg”™ ™ R o, 1+gN-2p 0, 87"

3y 0, A*

Ip+1
2-2
13,0y g~ P CcpracN—p

ieiy1i i i k
%_hl _,_Ehl"Pa’P 1oelp=1lp. |:81Pglp+1JN( P _ [p] _)
[p+ 1]q dp+1 e 1 ! H

— k iN Jpi
_[p]q (q 1+m)8/jlpgjpp+l:|a alpHAz

2-2 +1-4 ¥ op-1
q= " cpren—p | gPT T T +g27?

= gh g0
[P"' l]q dp+1 qlf% +(]%71
+1-4 ¥ _p-1
—[p]qqp S eh g APt gin | A2

. A.20
qP T +q27P fp-1dp ) )
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In order that the second term in the square bracket be opposite of d*d*&% ... &/ it must be
! CpCN—p+1 _ qu*% +q%7p71 [p]q Cp+1CN—p
dp qp,% +q%7p [p+1]q dp+1
N N
q77+q7 [p]q'[N_p_l]q
= N — — - -
qP*g + q%*l’ [N]q'dN {[ p]qCpCN p+l [p]qcp+1CN p}

namely, forp =1,2,...,N — 1
[N — p]qCpCprH - [p]qCpHCpr =0.
This recursion relation is solved by
[N — 1]q>
Cp+1CN—p = CiCN. (A21)
e ( [pl,
When replaced in (A.20) we find, on all of DC*, and in particular on %,

2 _N N
q-c CIZ‘HI2

(d*d* +*d*d)g" .. g =
0[Ny g'=% + g2

OA2g™ . g, (A.22)

Taking ]_[ p=1 2 of both sides of (A.21) and multiplying the result by cy(ccy)? we obtain

- NN —1] [N =1l
didy . ..dycy = colcien) ( [, ) ([N — 2]q>’

implying, because of (3.17),

N N - ,ﬂ N_y
<_1> =<ﬂ) _ 1—[ P tge
co[Ny dy[N1,) CO[N]q

=0

~|2
le

Before proceeding we note that we are still free to choose the value of dN = cocy and the
normalization of ¢y w.r.t. ¢o, in other words we are free to choose the values of both ¢, cy.
We choose

R ql_% +q%_l
ey =1, co=dy = [ (A.23)
[Nlg! 15 g' 2 +q>7"
the first choice guarantees that *1 = dV, and therefore also *dV = 1 in view of . As a
consequence,
( A >N g agr )"
co[N]y q*% +q%
implying
17%_’_ %*l 1 N-1 _N N_y
q 2 tg>2
C] - CO[N](] _ = N ﬂ—l
q 2 tg>2

o q
T4gr [N —1]! 1 ¢~
Multiplying both sides of (A.21) by 1/cy—, = ¢,/d, and using (3.17) we thus obtain the

recursion relation

+
Cp+1 = Cp[N - p]q
+

Solving the latter, the final result for p = 0, 1, ..., N reads (5.11). As for (A.22), we find that
on all of DC*, and in particular on 2%, (5.10) holds.
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Finally, we see that the normalization condition (A.23) for dy = dj implies a specific

value for the normalization constant

(812...1\1)—1
YN = {(s—n(l—n)...n)—l

in (3.5), which can be computed case by case. In particular, for the cases N = 3, 4 this implies
a different normalization w.r.t. the one adopted in section 3.
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